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ABSTRACT

Using Maxwell's electromagnetic equations and defining
a superconductor as a conductor in which the magnetic
induction is zero, expressions are obtained for the magnetic
field and surface currents about a superconducting torus for
several cases. First, two basic cases are solved, one in-
volving a scalar potential only and the other a vector
potential only. Then by superposing these two solutions
appropriately, other interesting cases are studied. From
these solutions are obtained expressions for the self-
inductance, magnetic moments, and other characteristic
quantities of the superconducting torus. These quantities
are tabulated for a number of tori. To facilitate computation
of quantities not adequately covered by the brief tables, ap-
proximate formulas are included in an appendix. Finally,
to illustrate the practical value of these calculations, the
behavior of a superconducting torus in a magnetic cycle
is studied.

PROBLEM STATUS

This report presents the findings of one of the math-
ematical investigations being conducted on the behavior of
superconducting systems.
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NRL Problem P01-07R
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ELECTRODYNAMICS OF A SUPERCONDUCTING TORUS

INTRODUCTION

Experiments are frequently conducted using a superconducting

toroidal ring of circular cross section, the ring being placed in a

magnetic field applied perpendicularly to the plane of the torus.

Consequently, a calculation is presented here of the field and

current distributions, and other properties, of an ideal super-

conducting torus (with zero penetration depth).

In order that there be no resultant field inside the material

of a superconducting torus, surface currents arise which are dis-

tributed so as to produce a magnetic field equal and opposite to the

applied field within the material of the torus. Further, there may

be present surface currents, in the absence of an applied magnetic

field, for which the net current is not zero, but is produced by an

external supply, or is induced to conserve the flux enclosed by the

multiply-connected superconductor (torus) when the external field is

removed. In general, the torus in a magnetic field applied perpen-

dicularly to its plane will possess surface currents which are a

superposition of these two types.

The basic electrodynamic problems solved here are the following

two types:

Case I. A superconducting torus in a uniform field applied per-

pendicularly to the plane of the torus, with zero net
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current. This is the Meissner-Ochsenfeld effect

giving zero resultant magnetic field within the

material of the torus.

Case II. A superconducting torus in zero applied field with net

current not zero. The current must be so distributed

over the surface that the resultant magnetic field

within the material of the torus is zero.

The results obtained for I and II can be utilized in the analysis of

the following cases:

Case III. A net current is supplied by starting with an applied

magnetic field and with zero net current (Case I),

then removing the applied field leaving a net per-

sistent current (Case II). This case differs from

Case II in that the field and current distributions

for Case III are expressed in terms of the initial

applied field rather than the final net current, as

in Case II.

Case IV. Beginning with zero applied field and no surface currents,

a magnetic field is applied inducing a net current in

such a manner that the enclosed magnetic flux remains

zero. This is a superposition of Case I and Case II.

The basic cases, I and II are calculated rigorously with the

assumption that the penetration depth (l1-5 cm) is negligible. From

these cases, rigorous expressions in the form of infinite series are
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obtained for cases III and IV by superposition after a determination has n

been made of the enclosed flux for cases I and II. In addition, a

rigorous expression is derived for the magnetic moment of the torus for

each of the four cases, and for the self-inductance of a superconducting

torus.

To make the calculations more immediately applicable, approximate

formulae are given for the maximum and minimum fields at the surface

of the torus for each of the four cases outlined above. Similarly,

approximate formulae are given for the moments and the self-inductance.

The error in each of these approximate formulae is easily evaluated

by comparison with the numerical results obtained by tabulation of the

rigorous formulae. This enables one to use the approximate formulae

with greater confidence. These formulae are collected in the appendix.

Finally, the results of these calculations are used to determine

the behavior of a superconducting torus subjected to a magnetic cycle

involving the suppression of superconductivity.

SOLUTION OF THE FIELD EQUATIONS

A. METHOD OF CALCULATION OF CASES I AND II

The assumptions made are that the penetration depth is negligible

relative to the thickness of the wire forming the torus, the normal

component of the field vanishes at the surface of the superconductor,

and the intermediate state is not involved.
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Case I. In this case we compute the external field H and surface

current distribution J from a scalar potential V, the equations being

V = 0 externally, ()

H = - CLadV (2)

and the magnitude of the surface current J, in electrostatic units per cm.,

J = r (H at toroidal surface) (3)

Case II. The field distribution H is calculated from the vector

potential A, the equations for this case being

\7XVXX= 0

with V 0 (5)

and H -VXA (6)

The surface current is found from eq. (3) and the total current I

is introduced in the usual way by taking the line integral of the magnetic

field around a closed path threaded once by the current.

These calculations are made in the toroidal coordinate system.

B. THE TOROIDAL COORDINATE SYSTEM

In this sections we shall describe the toroidal coordinate system

and give the differential operators in terms of these coordinates, without

proof. 1, 2 The transformation equations connecting the familiar cylin-

H. Bateman, Partial Differential Equations of Mathematical Physics,
Cambridge University Press (1932). Chapter X.

2 E. W. Hojsons The Theory of Spherical and Ellipsoidal Harmonics, Cambridge
University Press (1931), Sections 253-258.-4 -



drical coordinates ( fP 0) Z ) with the toroidal coordinates (s, 9 ,

T ) are the following, the polar angle 0 being identical in the two

systems a-I

S - Cost (7)

7- :
S - Cos C (8)

and conversely, 2 2

C ofp (f(9)
C LZ

S =( 2 Z)~UC (10)

It is customary to employ the coordinate )A, = cosh 1 s instead of s, as

is done heres but the solutions of our problem occur as functions of

coshA and consequently s is more convenient to use. Moreover, the

coordinate so = constant which defines the toroidal surface of the

superconductor has a simple geometrical meaning, namely, the ratio of

the mean radius of tohe toroidal loop to the radius of the toroidal wire.

Fig. 1 shows a section of the toroidal coordinate system in a

e constant and 0 * r = constant plane. The s = constant surfaces are

tori, the tori for smaller values of s entirely enclosing those for

larger values of s. The value s = 1 designates the torus which fills

all of the coordinate space and whichl, physically, corresponds to a

finite torus whose inner rim is reduced to a point. The value s = xr

corresponds to an infinitely thin torus of radius a. Thus the symbol
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= 7F/6

S =1.1

= 1.4

Fig. 1 - Toroidal coordinate system
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which occurs in equations (7) through (10) is the scale factor of the

system. If R is the distance from the center of the circular cross section=

of a torus to the center of the loop (mean radius of a toroidal surface)

then % is connected to R by

a= S. /s (11)

where so is any particular toroidal surface (for example, the surface

of the wire).

If we denote by rw the radius of the circular cross section of a

torus (for example, the radius of the wire forming a torus), then

so = R/r (12)

The two sets of surfaces orthogonal to the surfaces s = constant

are the half planes B = constant and the spherical bowls 5 = constant.

The e6 constant half planes are the same as the half planes of

cylindrical coordinates. The = constant spherical bowls all have

the fundamental circle s = o , of radius a, as their common rim. When

T = 0 or 2E , the surface becomes flattened to the infinite plane

outside the fundamental cir'cle and corresponds to the cylindrical

coordinates z = 0 andfe > a. Then =7r , the surface is again

flattened and is the thin circular disc of radius a corresponding to

the cylindrical coordinates z = 0 and < a. In the upper half of

Fig. 1 IT has the range, 0 < (9 < 1 , while in the lower half,

IT < I < 2ir .
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FUNDAMENTAL CIRCLE,

Ge0

Fig. 2 - Directions of positively increasing S, 9, vP
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The directions of positive sy, 61 are shown in Fig. 2. The

line element dl is given by

dla N 2 7[JsYI(s2_1) + d y2 + (S2_-)dO2J (13)-

where N = a /(s -Cos (14)

From eq's. (13) and (14) we can deduce the following operator relations:

gradV (gradV)s = "'5"' a, (15)N -aS (5

(gradVh = 2Y (16)

(gradV) = (17)

VA ( s=-j~j f2 [N As) - (2 (18)

,qXXX(y Nt [ a B ( l (19)

(V X l )-12 v( (NA Y q 3(N AS (2r)

2V vV~~~vX5(N(5~~~')As) a (Wa)+i A&)]0 (20)

C. GFMERAL SOLUTION OF THE DIH~TZENTIAL EQUATIONTS

Case I: A Superconducting Torus in a Uniform Field Arplied Perrendiculerly

to the Plane of the Torus, wlith Zero Net Current -

The Iaplace equation govrerning V is

- 9 -



S --co US / M S-COoS act

(23)

since the symmetry of the problem shows that V will be independent of

the coordinate 9 . The equation can be separated if we write

V = - L (24)

and then separate the equation for U by writing

UJ (sa'') = ;S(S) G (4) (25)

giving d24' +
+

(26)

J [(s cis)J (n 2 -)S1 0 (27)

where n2 is the separation constant.

Since there is no net current in this case, the potential must be

single valued so that

V/ = My sw[b0Pis) -+aJ0 (5) Sin n T tZb 6 F (s)Cos nil (28)

The symbols Pn_(s) (n = 0, 1, 2, - - -) are half-odd integer Legendre

functions, of the first kind satisfying the differential equation (27).

Those of the second kind Qn - (s) become infinite at s = 1 and are not

suitable for representing the expansion of V. The properties of these

functions will be discussed in a later section.

The components of E are, according to eq's. (2) and (15), (16),

(17), = - (S-co )v7 -, (9

-10- as(29)
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(30)

with l * 0.

Case II: A Superconducting Torus in Zero Applied Field with Net Current

Not Zero -

Frum symmetry, there will be only one component of the

current vectors namely the 8-component. Therefore, the only component

of A will be As which we shall briefly denote by A. Eq. (4) becomes

U-aS [(s-os f~(vaI SA)1 +k1(s>w)° (3 1)
as I0 'as I (31)

We can separate the differential equation by writing

A = -as -Coos y-f T(S (M) (32)

and find that
d2 n

'j2 4=0 (33)

and

dw2 ,YdI1- ( | + n -4) T = 0 ()

If we write T A x dS where S is the solution of eq. (27), me
ds

find that T satisfies (34) so that A is given by
do

A =V~~ [5S (bo ±+ c0qC ) E 1(s)+CAn'1--(S)S' n1T +zb , ~(s)Cosfl J
VI =I v~1=1 (35)
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where t(s = d W(S)/4s = 1n (s)
"1 ~~~~~~~~~~~~~~~(36)

and T (s) is the associated half-odd integer Legendre function of

the first kind and of first order. Those of the second kind become

infinite at infinity and are therefore excluded.

The components of H, according to eqts. (6) and (19), (20), (21)

are I -sh A -A- A ()
A + ~S -c~os Vi2I A

(37)

Q TS ju777-- 7sGs)< CL (38)

with He 0

D, THE HALF-ODD INTEGER LEGENDRE FUNCTIONS OF TEE FIRST KIND

A convenient form for the representation of the half-odd integer

Legendre functions P (s S i , is the Laplace second integral 3

5 <(s) _ (39)

For the case n 0, we get

P.L(S)= w K(k) (0

where K(k)=0 /I-/# ) is the complete elliptic integral of the

first kind and

5+ a-1 ~~~~~~~(41)

3E. T. Whittaker and G. N. Watson, Modern Analysis, Cambridge University
Press, (1927), section 15.23.
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Similarly (42)_
where E is the complete elliptical integral of the second kind, and

k is defined by eq. (41).

Values of 1P, ^(s) for n > 1 can be obtained from these by recurrence

formulae. 

An alternative expression for 62y (s) and for 1P,;s) can be found

in a few lines by an analysis of the differential equation (27). The

Riemann P - equation for eq. (27) is the scheme (treating s as a complex

variable for the moment),

Pn (s) = P 4° ° ++1 1 (43(S '$ n+i
( O O -n+ 2

To find W (s1 we set n = 0 and transform the Riemann P - equation

(43) by making the homographic substitution

t = (s- l)/(s + 1) (44)

obtaining
(Jo I 0 

p.(), P O °t 
-0 0

R'(s~~=-vr~tP( o a 0 o oo

01P -'i =Pi 2 t
o~~~~~~~~~~~~~~( o (5)

Thus, the relation for Pi(s) becomes

f , sci 15 ( 2 .21.

4 Ref. 31 section 15.21.
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where F is the hypergeometric function. But, the complete elliptic

integral of the first kind K(k) is related to the hypergeometric

function by 5

Y (k) = F ( ,1; I 9)(47)

so that

(48)

From eq. (48) and the recurrence formula relating PP (s) with ROO)

and Jp,(s)/.I. , 4

R (s)= 2 [2 E Wh -fi(k) (49)

where

(50)

and should not be confused with the k of eq's. (40), (41), (42).

Fig. 3 shows a plot of P- (s) for several values of n. For large

values of a8

_________~i )st'+ (ji
p (}~~ 4 Sr(n+11^ n (51)

For a * 17 Pn4.(I) = I , for all values of n. (52)

5 E. T. Copsont Theory of Functions of a Complex Variable, Oxford
University Press (1935), pp. 245, 394.-1.4-
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Fig. 3 - Pn4(a) functions
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X. THE HALF-ODD INTEGER LEGEMDRE FUNCTIONS OF THE SECOND KIND

The convenient expression for Q (s), the half-odd integer

Legendre function of the second kind, is1

Qn- i Y2=6Ja (53)
Putting n O 0, and transforming the integral appropriately, we can show

that
4 ^ (s) = K (a ) (~~~~~~54)

Using the recurrence formula 6

QJ~(S) S Q. (s5)- z(s-t)cQ4 s)

we get from (54)

Q. J2 s( ) - 2 (55)

Recurrence formulae can be established for these functions and are

identical with those for ln Is), with QnUs) replacing P , 1(s).6

Fig. 4 shows a plot of Q, 1( s) for several values of n. For

large 5s Q (s2 fi) (56)
A relation between these Legendre functions of the first and second

kinds which we shall often need is the following

- f9[? A+(5) Qn {(s) (s)Q 4(s)j0 _ (57)

6 Ref. 3, section 15.32.
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Fig. 4 - Qn4(8) functions
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for n = 0, 1, 2,- - -. This can be shown by proving that eq. (57) is

true for n = 0 using eq!s. (48), (49), (54) and (55), then using the

recurrence formulae (bc-. gt. 4, 6) to show that the expression in

eq. (57) is equal to a similar expression with (n - 1) replacing n.

E. CASE I: FIELD AND CURRENT DISTRIBUTION

In the remainder of the report we shall simplify the writing by

employing the abbreviated symbols P .- (S5 Q,

, 4 (} QC A (s4), 2and so forth, where s, is the

surface of the superconducting torus.

We begin by finding an expression for the uniform applied magnetic

field. Let VO be the potential of the uniform applied field Ho so that

V = - H.Z.( a si Ho

=-aLH Vas =CS~, ( 5 in

Now (s - C05 C) can be expanded in terms of the solutions of eq. (23).

The expansion, given in terms of Legendre functions of the second kinds,

is~ ~ ~~~~~g 7 (snsz~ i+2ri Q cos n My (59)

By taking the derivative of both sides of eq. (59) with respect to 9',

we find that

a= Q

from which

V = 4 Coo H. Ad En ~Qn 'nof nt-l(60)
v Ref. 2, p. 443
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This expansion diverges at s - 1, but is to be used only as an auxiliary

relation to enable us to match boundary conditions laterson the our-

face a. > l1,here the functions are finite. Then, the portion

of the resultant field due to the applied field will be expressed again

in closed form as in eq. (58).

The potential for Case I will be written as consisting of two

parts, that due to the uniform applied field given by eq's. (58) or

(60) and an added potential V1 which is given by eq. (28) and whose

coefficients are so chosen that the normal component of the field

Es -- grad 8 (V0 + V shall be zero at s so, that is, at the surface of the

torus.

Considerations

to the z - 0 plane,

of eq. (28), we see

must be represented

we have

of symmetry show that the field must be perpendicular

that is, Hs - 0 when (p 0, iT. By taking the gradient

that this requires that b, = b" - 0 , so that V

by a sine series just as V . Hence writing

V = V. +-,

B = qff cHs
or

00

V = vs-Tny (ann- rBQi)sirvti7
-n= I

and alternatively 0 a aH sin + o-

t- (s+ 4f1+,P" - sun nI

- 19 -
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V

We take -- (grad) 5 of eq. (61) using eq. (29) and reduce the

result with the recurrence formulae

< Pn-* + s PnF '~ * ~ i ( Pn -0+ (63)

Qn--L 4 S Qn- (Qt +Q -)

(64)

derivable from the usual recurrence formulae, where the prime denotes

first derivative with respect to s. Also, we let

A" -1 an+s- art

A, = -, (65)

The result for H. is

HIS 2 5-'5o {~nl"+^- I Z: n++X I-)P; (66)
nzI

At SoF tI a O for all values of y so that

01 A 0
Ain 6+l P,+-, YZ B (din+. Qn,: (67)

From the recurrence formula expressed by eq. (67), we can write

An + 1 in terms of Al. The result is

tiA l -' Bt, ---- +I Al (68)

- 20 -



r-

GX
A1 can be determined from the condition that the line integral of

the magnetic field around a curve threaded by the torus is zero.

since the net current is zero. The easiest path along which to inte-

grate is that for which s = constant < so and in a 0 = constant plane.

The component of the magnetic field along such a path is just H,

It is evident that any line integral in the uniform applied field

will be zero, so we consider only that part of the field HEl due to

V1. In this case the line integral, using eq. (13) with ds = dO = O,

is

f lsdl =5~#rO j W He °(69)
S.C.5(

Now, from eq. (30), the V1 pt

obtain for El l

Substituting eq. (70) into (69) ai

sentation of Q,_ given by eq.
2

Z An+l (no + Q ryxC
ivi 0

which., in view of (57) reduces to

art of eq. (62), and from eq. (65), we

Et 2(n 1A +70 )-(n-j) '1
VI= I

'id referring to the integral repre-

53) we get

fn-j a PP- I Qnx 4 ) = 0

00

Z Art= °
h.= I

(71)
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Equations (68) and (71) together give

[ 4 J I I I

with

(73)

Thus the problem of Case I is essentially solved. Before collecting

the parts of the solution together, we introduce the further simpli-

fication
If IQ4 Q1 =2Q ,

and _ 8 'C a H.
=he 4r - (' ~+ I

The magnetic field distribution and surface current distribution

for Case I: eo

- -sinSiH / =- n+- ± -Otf, si ny

H1 /Ho= +

(74)

3Ffs-s Il2 

+S|(n~sat"+Pnz-(2n-I)1(rP,- aLtsnqA+T t,= +1Qn% n I. 

(75)

. H ~S. cosf ± I,/";- S. s -0 4

1 2 V-507 -- 'P ,S5t t|s) -(-1n-,)LA1-1ASsnf
n-i

(76)

4-22 -

(72)

.0 1 1 1: I
F = P. P-, L 1

'x z "=0 P.-, 0.1,



where ______,,|
O,-~~~~~~~~~~~~~~I

(77)

(F is given by eq. (73))

and P,
cLn~1 '!LHe, fb + A *IC Ol~~~~n~~~i P, 5 ~~~~~(78)

J is in electrostatic units per cm. To express the current density in

amperes per cm.. let JA be the surface current density in amperes per

cm. Then replace J/c in eq. (76) by JA/10.

G. CASE II: FIE AND CRRENT DISTRIDUTION

The detailed calculations for this case are somewhat more

laborious than those of Section F. But as in Section F. we shall con-

fine our remarks to the broad outlines of the calculation.

As before, we begin by calculating HO, using eq's. (35) and (37).

From symmetry E. must be zero in the Cf = (O,7 ) plane, that is the

field is perpendicular to this plane. This consideration taken to-

gether with the condition that H. be single valued in (y leads to

an O, n > O. This leaves

=s -N ~a tEitsin 4f ws ny

n~~~~o ~

00 sin n~
n=6

-2 S mbn- COS i o snn 

-23 -



The quantity enclosed in the braces must be expressed entirely in a

sine series. Thens, by appropriate use of the recurrence formulae and

introducing the constants

13n+i=( + 3)b+_(-2b

Bn (n -j ) llrh - n3

.~~~~~~~2

B 2 - s bz - I b,

and 2 b, + b. 7

H8 becomes (

Hs= 2a EtB6 El~ n }sn " (79)
ns a

When s - H5 . 0, for all values of 9 . Thus

Bn.F,= Bn - / In

which leads by successive application to

nI= {ts .S B1 (80)

To find B1, we proceed somewhat as in Section Fe That is we

express HI Ln terms of B1 and take a line integral of H around a

circular path a * constant < 8o

- 24, -



In view of the conventions adopted in Section B (see Fig. 2),
21r 271 

r y~~~~~rI _ Pz >
C s3-COS (8.)

with a - constant < 8e I is in electrostatic uits and is the net

current in the torus.

To find Hy 9 we use eq. (35) with an a ° and eq. (38). Just

as H5 was expressed as a sine series, so H must be expressed as a

cosine series. This trigonometric transformation and the successive

reduction of the coefficients of the trigonometric terms by use of

the recurrence formulae is much more tedious than in Section P.

However, by using eq. (80) when the expression has been properly

reduced, the end result is

Hy=ZHB,12P +q (-;s- t~cos in

To integrate (81) we write H asI

(09 fl~~~~~ (83)

and substitute into (81). With the help of eq. (53) the integration

of eq. (81) yields

Replacing fn(s) by the corresponding terms in eqs. (82) and (83) and

using eq. (57) we get

B2l =- F (84)-25 -



where F is defined by eq. (73).

Therefore, the mignetic field and surface current distributions

for Case IIv when account is taken of eq. (11) and I/c is replaced

by IA/10, where IA is the current in amperes, are

HSR/la=~~~~~4foc I 6S;ft i: 1 (3

JsR/IA 'F V{13-. (+ (v t (87)
F ,-, , fi+)5+9z-Z 2is 

CHARACTEISIC QUIANTITIE3S

H. CORI/TATION OF F8LX AND SOLUTION OF CASES III D IV SOSITION

'In' ase III,' we wish to find expressions forEI andB Jdue to a per-

sistent current remaining after removal of the applied field. Wle shall

assume that the persistent current remaining is just tha amoLm~t required

to mitain the flus in the ring at the value which existed when the

toruo wias in an applied field H0o and had no net current. This means

that the torus begins in a situation pz'trayed by Case I and ends in

Case II. The solution of the problen will follo2 immediately after

the flus for Cases I and II have been determined.

- 26 -



Starting with no applied field and no surface currents, a field

is applied and a net current induced in such a manner that the enclosed-

flux is zero. This is Case IV, and is solved as soon as we know the

fluxes of Cases I and II since we need only oppose equal and opposite

fluxes to complete the solution.

We shall use the symbol 4' to indicate flux (not to be confused

with the symbolP in eq's. (26) and (33)). A superscript Is III III,

or IV on any of the physical quantities flux, field, current moment,

etc., will indicate the case which the quantity represents.

To compute the flux i for Cases I and III we take the surface

integral of the field over the tf= r plane from s = 1 to s = i. The

non-vanishing component of magnetic field is HIf9 and since 9 = r

we write this as Ha.

(88)

where dA is the element of area. dA = 2Rpdfp in the z = 0 plane.

In toroidal coordinates, putting t =-9r I we have
5.

s=s

By inspection of eq's. (75) and (86), with p ='X I we see that the

general term for H,, is of the form 1 e i in both cases

so that we have the following types of integrals to evaluate.
S

C P"-.4 (S) as ~~~~~~~(89)

- 27 -



When the upper limit is sO,9 we write (.-j for the integral.

To integrate C-1/2, ve refer back to the elliptic integral

expression for P. 11 2, eq. (48), with k = I . Thus

2-2 a, = rK(W c Ok
0

on transforming from s to k. Integration by parts yields

I< 00

On the other hand, using the relation

in ZK aE

which is one of the standard expressions relating K and E, we can deduce

that

C-, = 2 Ja |(K-E - jk JaK Jh1 (92)

By subtracting eq. (92) from eq. (91) we can eliminate the integral.

Then transforming from K and S to ? -1 by means of eq's. (48) and

(49) we obtain as our final result

N = .A-- (93)
Similarly, ie can deduce that

C, (2sel)P- 1 3 Pk (94)2 , _7j
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For n > 1 in C,+-L we derive a recurrence formula from the

standard recurrence formulae connecting the IR+L functions of

various degrees. To evaluate
$

Cn~~~_| + I )

we begin by setting up the identity

J I(p i.>A . f. - Phn. - I -n~,~ ~
P.2

dJS -r -+I S (S71)

By means of the recurrence formulae

(5's ) P =(nt P. -P

IL = _ )

we can show that the identity we wrote transforms to

ci ,fF
'n,1'-j + (n+1) f"-j

(s .,. a

Integrating this expression with respect to s, we obtain

_- ' = VI C 1%-V + (n4-1) Cn->

or finally

C _ | w _ (I..L Cn- 
(95)

This holds for n = 1l, 2 3 - - - . It is indeterminate for n * O.
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Therefore

- (s +E() [(2n+:Aa1n4)tn l
';4. (al +(n1 O.e- (96)

Similarly.,

s = W s2 dit-' F-1 ( + 2 PVP~l Fi 4 n-i)Cn-4I A-0 AA 2 -FC +2L')LAi 0. n1

(97)

To determine the field and current distributions for Case III, we

set e=4D . We denote by rhs(96) add rhs(97) the right hand

sides of the respective equations. Then

iA =R HoF 7r hAs (96)] rbs (9 7)]

If we put [r (964

G - -[rhs (97)1 (98)

we can orite

IA -R HlG
(99)

The magnetic field distribution and surface current distribution

for Case III are then obtained by substituting for IA in sq's. (85),

(86), (87) of Case II. It is not necessary to write the expressions

explicitly here.

Case IV is a superposition of Cases I and III. The relation can

be summarized as

-1IY HI H (100)
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and H have been matched in regard to their

fluxes, the flux due to H within the ring is zero.

G are tabulated in Table I. 8

TABLE I

FLUX FOR CASES I AND II

4 !, 4 X and

s=R _ I re ~ /IAC

(1) (2) (3) (4)

1.2 1.2562 x 101 1.2721 x 10 1 3.102 x 10 
1.4 2.6596 " 2.9864 " 2.7978 n
1.6 3.8156 nf 4.6714 n 2.5660 t

1.8 4.7354 n 6.2421 " 2.3833 "
2.0 5.4680 n 7.6859 2.2350 tI
3.0 7.5404 " 1.3353 x 10 1.7741 n

4.0 8.4411 n 1.7346 " 1.5288 to
5.0 8.9152 n 2.0395 " 1.3733 t
6.0 9.1972 n 2.2852 H 1.2644 "

7.0 9.3793 n 2.4907 it 1.1830 n
8.0 9.5043 n 2.6673 n 1.1194 n
9.0 9.5940 n 2.8220 it 1.0681 tt

10.0 9.6608 " 2.9596 n 1.0255 "

I. SELF-INDUCTANCE

The self-inductance L of a superconducting torus in terms of the
flux and current IA is (in henries)

L10 /lA (101)

8 P.: + Pvtk4> and the corresponding functions of the second kind are
tabulated in Tables of Associated Legendre Functions, Columbia Uni-
versity Press, New York (1945). These functions are tabulated for
values n = -1, 0, 1, 2, 3, 4, m = O 1, 2, 3, 4 and s from 1.0 to
10.0 (intervals of 0.1).
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This can be shown by beginning with energy relations connecting

IA, L and H and remembering that the resultant magnetic field inside

the material of the torus is zero. Transformation of the volume

integral of the magnetic energy by Green's theorem then leads to

eq. (101). 9

Thus, if we put L in millihenries,

L/e If X 0 to F 7hi (10P1( lr - ])2)

in millihenries/cm.

To obtain numerical values of LA?. in millihenries/cm. for the

values of so = R/r shown in column (1) of Table I$ multiply the

(absolute) values recorded in column (3) of Table I by l0 5. For ex-

ample, when so = 4, LA = 1.7346 x 105 mh./cm. Fig. 5 shows a graph

of eq. (102).

D. LMGETIC MOERTS

Let LI represent the moment of a torus in any one of the Cases I,

II, III, or IV. Then

M f- pJ dJI

where dlO is the line element, in the surface, perpendicular to Jemu

there. M is in magnetic units (pole-cm. or dyne-cm./gauss).

9M. Abraham and R. Becker, The Classical Theory of Electricity and
Magnetism, Blackie and Son Limited, London (1937), p. 169. The
proof sketched there can be adapted easily to the superconducting
torus.

- 33 -



Converting to toroidal coordinates

l (. -Cos y
Examination of eq's. (76) and (87) shovathat the integrals in-

volved on substitution for Jemu are
'K

f tosnS dz _ 4N f A 
J( CO.5 (o y 3(s'0-i) nl- 2

0

n = 07 O, 2) ..

ir
TIG-tR, C1 I = -iJ&

0 (105)

Eq. (104) can be derived by differentiating eq. (53) twice under the

integral sign with respect to s and then multiplying by (S2 - 1) since

Qh , = -0 I ) dQn 1 /JSt Qn .i

Similarly, eq. (105) can be derived from 10

s -(1o05 w s2e fm

Using (104+) and (105) -we have f or the moment M x

!v17irFR H.

of Case I,

P 2

For Case II, the moment Mi

R2ts It = -,5 (I - 1 ) F - 1
is %

t e Qt + 2 t ~ ~ 44 m - - .- n- 

(107)

(103)

and

(104)

10 H. B. Dwight, Tables of Integrals, the Macmillan Company, New York
(1947), Item No. 859.21.
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The negative sign simply means that when IA is in the direction

of increasing e (Fig. 2), MI is in the direction of decreasing 5P

(or increasing z, Fig. 2). -f

Far Case III.,
M _ -3G

11 e3j. I (108)

For Case IV

I _ ~~~= ----
i I3

Graphs of the moments MIA , MI , M , and M

(109)

are shomn in

Figs. 6, 7, 8, and 9, respectively.

The moments are tabulated in Table II (magnitudes only)

TABLE II

MAGNETIC IOMMITS

RI ~ IitN 1'
fr c R2 rw R'H. R3 H iR-il

(1) (2) (3) (4) (5)

1.2 5.400 xscr' 1.256 X 0-2 2.922 X 072 . 5.692 x o-l
1.4 3-9790 t1 2.66 H 50582 n4-537 n
1.6 3.0411 1 3.8155 n 7.3430 " 3.7725 n

1.8 2.3960 4.7354 8 8.4643 " 3.2425 t
2 1.9349 2 5.4681 n 9.1659 n 2.8515 n
3 8.5001 xlO 2 7.5405 n 1.0033 il0- 1 1.8533 n

4 4.7508 if 8.4411 n 9.6787 X£L-2 1.4430 n
5 3.0293 n 8.9152 n 9.1825 n 1.2212 n
6 2.0988 n 9.1972 n 8.7216 " 1.0820 n

7 1.5395 n 9.3793 8 8.3220 " 9.8615 x102
8 1.1774 n 9.5043 n 7.9797 n 9.1571 n
9 9.2955 x10- 3 9.5940 n 7.6853 f 8.6149 n

10 7*5247 It 9.6607 n 7.4302 n 8.1827 n
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K. MLAIM AND MAINILM FDS

In experiments involving superconductors, it is desirable to

know for what value of applied field, or of persistent current, the

field at some place on the surface attains the critical value. Thus,

if me know the maximum value of the resultant field at the surface

of the torus in terms of the applied field or induced current, the

condition for critical field at the surface of the torus can be com-

puted. In addition, if we know the minimum field at the surface of

the torus, we can obtain a rough idea of the field and current distri-

butions, with the aid of qualitative drawings, without a detailed com-

putation of the infinite series representations. For this purpose,

Table III gives the minimum and maximum fields for Cases I and II

and Table IV for Cases III and IV. The subscripts 91 and 27w refer

to the coordinate T and indicate the inner rim and outer rim of the

torus, respectively. Only magnitudes are tabulated. Figs. 10, 11, 12

and'13 show plots for the outer and inner fields for Cases I, II, III

and IV.
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TABLE III

OUTER AED I-FNER RIMll FIELDS, CASES I AND II

s0 R/r H~r/H0 H2' /H. HZR/IA HX R/IA

Inner Outer Inner Outer
(Max) (Neither) (Max.) (Mrin.)

(1) (2) (3) (4) (5)

1.2 4.7434 1.8082 1.5289 5.04 x10-3
1.4 3.5688 1.8291 1.2757 1.461 x10-2
1.6 3.0916 1.8449 1.2056 2.727 "

1.8 2.8304 1.8573 1.1902 4.2419 "
2 2.6659 1.8674 1.1987 5.9640 "
3 2.3236 1.9002 1.3544 1.6804 x0 1l

4 2.2089 1.9188 1.5594 3.0047 "
5 2.1528 1.9311 1.7740 4.4734 "
6 2.1198 1.9400 1.9906 6.0378 "

7 2.0983 1.9468 2.2072 7.6699 "
8 2.0832 1.9522 2.4231 9.3522 n
9 2.0720 1.9566 2.6381 1.1073 x100

10 2.0634 1.9602 2.8522 1.2825 "
15 2.0395 1.9718 3.9119 2.1881 "
20 2.0286 1.9781 4.9580 3.1225 "
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TABLE IV

OUTER AND INNER RIM FIELDS, CASES III AND IV

S.= R/r H"/H 0 H2 AHo H-I/H 0

Inner Outer Inner Outer
(Max.) (min.) (Neither) (Max.)

(1) (2) (3) (4) (5)

1.2 4.743 1.562 xlO-2 O 1.8238
1.4 3.569 4.087 " 3 Xl0 1.8700
1.6 3.0936 6.9976 " 2.0 C10-3 1.9148

1.8 2.8366 1.0110 lO1 6.2 1.9584
2 2.6791 1.3330 " 1.31 x10 2 2.0007
3 2.4029 2.9813 " 7.93 " 2.1983

4 2.3841 4.5937 ' 1.752 x10-1 2.3781
5 2.4362 6.1434 " 2.834 w 2.5454
6 2.5168 7.6341 " 3.970 " 2.7034

7 2.6111 9.0736 " 5.128 " 2.8542
8 2.7125 1.0469 xlOO 6.293 " 2.9991
9 2.8177 1.1827 n 7.457 ' 3.1393

10 2.9249 1.3152 ' 8.616 0 3.2753
15 3.4681 1.9399 " 1.4286 XIO 3.9116
20 4.0024 2.5206 n 1.9738 " 4.4987
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BEHAVIOR OF A SUPERCONDUCTING TORUS UNDER MAGNETIC CYCLING

A number of experiments and descriptions concerning the behavior

of the moment of a superconducting torus in a variable applied magnetic

field appear in the literature, but perhaps the clearest exposition

is that which appears in Shoenberg's book on superconductivity. 11

In Fig. 14, a hysteresis loop for a superconducting torus of

ratio 80 - R/r - 4, is plotted, this being the size used in one of

Shoenberg's papers. 12 The solid lines in Fig. 14 are for the super-

conductor in the ideal state and are subject to the calculations of this

report when we introduce the additional provision that the surface currents

are limited in such a manner that the maximum value of the magnetic field

at the surface of the superconductor shall not exceed a certain critical

value Hk. In view of eq. (3), this can also be considered as a restriction

on the maximum allowable value for surface current density. This means

that the persistent current will conserve flux, when the applied field

changes, only to the extent that the critical field value is not exceeded

at the surface of the superconductor. We shall use the same units as

Shoenberg in our discussion. 11 m 4 E/ 4-r RHX is the moment X of

the torus divided by the volume of a sphere whose radius is the same as

the mean radius R of the torus and also divided by "k. h is the ratio

of the applied field H0 to the critical field ?k. The facts concerning

the intermediate state incorporated in the broken lines of Fig. 14 are

11 Do Shoenberg, Superconductivity,, Cambridge University Press,, (1938),,
Chapter IV.

1 D. Shoenberg, Proc. Roy. Soc., 155, 712-726 (1936).
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those given by Shoenberg and others from experiment and are not amenable

to the calculations of this report, but are accepted ad hoc. C:

Line OA: Beginning at 0, with no applied field or persistent current,

h is gradually increased. From Table II, column (5), the

eq. of OA is m = 0.1443 h. This line ends at A when the

critical field is reached. From Table IV, column (5),

this is reached at the outer rim (9 - 2rr) first, and

actually at h - (2.3781) 1 = 0.42050, with m at A equal

to 0.060676.

Line AC: If it were not for the critical field condition, an in-

crease in h beyond 0.42050 would result in a prolongation

of OA. But now, any current density on the surface of the

superconductor tending to exceed the value associated with

Hk is dissipated somehow. Thus the net persistent current

will not increase, but will actually decrease in order that

the field at = = 2rT remain critical. In the meantime, the

field at T = fr will increase with increasing h until it

likewise attains the critical value. Thus we have the

line segment AC, terminating at C when the value of the

field at (?= IT has likewise reached Hk so that the field at

both inner and outer rim is critical.

(Such expressions as "the superconductivity is destroyed just long

enough to permit some of the lines to cross the ring and increase the
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enclosed flux." have no meaning and are actually incorrect electro-

dynamics. The current merely fails to increase enough to compensate for

the applied field increases and maintain zero flux. One must use the

superposition principle. Zero field inside the material of a super-

conductor means an equilibrium of magnetic force fields, an equilibrium

between applied field H and "spontaneously" induced field -Ho due to

induced surface currents. This means that the resultant B is zero. In

electrodynamics, as in mechanics, "force equilibrium" has an entirely

different meaning than "absence of forces.")

I From Table III, column (3) and colurrm (5), the field at the outer rim

is given by

H= 1.9188 E + 0.30047 IA/R ( ' = 2rT)

From Table II, column (2) and (3) we have

M = 0.047508 H. 4 T-a + 0.084411 API
03 A

From these two squations, it follows that

m - 0.21070 - 0.35677h

is the equation of line AC.

The terminus C is reached when H , or

Hik = 2.2089 Ho - 1.5594 IA/R (Cf - Tr)

On the way to C, the field at the inner rim reverses sign and

becomes parallel to the applied field and the field at the outer rim.

At C, m = 0.029194

h = 0.50874
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Further increase in h must put the superconductor either in an

"intermediate state" or into the "normal state." For no arrangement of

surface currents, obeying our analysis for ideal superconducting tori,

will result in a field less than or equal to the critical field at the

outer and inner rims. LExperiment shows that the superconductor enters

a so-called "intermediate state" which endures until the applied field

h = 1. The superconductor acts as though the permeability 11 has some

value between zero and unity, rather than zero as for the ideal super-

conductor.

Lines OD, DF: Consider the case of a torus split in a manner such that

persistent (flux conserving) currents cannot occur.

The relationship between the moment and applied field

for this case is the line OD. The equation for OD is
(Table II, column (2))

m = 0.047508h

D is reached when the field at the inner rim, where it is

maximum, reaches Hk. From Table III, column (2), this

occurs at

h = (2.2089)Y1 = 0.45271

and for m at

m = 0.021507

Beyond D, the field at the surface of the torus would

exceed H if the torus would remain in the ideal state.
k

However, the magnetic moment, by experiment (Shoenberg 11t 12

decreases linearly to zero as h-1. The path ODF is

reversible.
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Lines CE, EF: According to experiment, the torus, which was carried

to the state C via OA, AC, drops to E and then follows

the split torus path EF reversibly. This was taken by

Shoenberg to mean that beyond C, the torus has no per-

sistent current and is indistinguishable from a split

torus. This, of course, neglects the effect of the split

other than its prevention of persistent currents. At C,

there still remains a net current, of amount IA/RHk = 0.07936

amperes per gauss cm. This accounts for the difference in

m between the points a and E. iny attempt to increase h

beyond its value at C immediately throws the torus into

the intermediate state where persistent currents can

no longer maintain themselves and it drops to E and

follows the split ring course to F.

Line FD: Not until D is reached, on the return from F, can the

superconductor exist in the ideal state. Any attempt to

set up persistent currents to conserve flux somewhere

along FD would result in the field at ¶ = IT exceeding

Hk. The net current was such as to subtract field from

the "case I" field at f = fr along the path from A to C,

but'on the return from F, a net current would add field

to the "Case I" field. When D is reached, the field at

the inner rim is maximum and is equal to the critical
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field. Thus on the return path from F to D, the behavior

of the torus does not differ from that of a split ring.

Line DG: One might hope that in decreasing the field h from the

value at D, the flux value at D would be conserved.

However, the current required to conserve the flux at its

D value turns out to be such as to give rise to a field

exceeding critical field at the inner rim. Only as much

persistent current will flow as can occur without the

magnetic field surpassing H at the surface of the torus.

Referring to columns (2) and (4) of Table III, we see

that the limiting condition on the net current which can

flow is

Hk = 2.2089 Ho + 1.5594 IA/R

For the moment, we have

4Mid = 0.0 4 7508 SHo - 0.063308 IA/R
nR3

3

which yields the following equation for t;he line DG,

m - 0.13718h - 0.040597

In the absence of an applied field h, the torus is left

with a residual moment, at G,

m =-0.040597 (h = 0)

due to the current

IA = 0.64126 Hk R amperes

Corresponding to this residual current, the flux at G

is only 92.7 per cent of the original flux at D. The point

C lies on the extension of line DG.
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Line GK: Beginning with the torus at G. we make the field negative.,

The current continues to increase in magnitude with H - X

all the way from G to K'. At G, H2, is 0.19260 HX and in-

creases to Hn ' X at K'. This is a continuation of the

line DG through G and stops at

h - - 0.34437

m = - 0.087836

Line GB: This is a superposition of a Case IV current maintaining

zero flux, and the current already present at G. This yields

the equations

H2, = 0.19260H - 2.37812HO

- H - 0.17520H,

As h increases from zero, HT decreases to zero and H~ff decreases

to zero. But, % n reaches zero first and increases to X , all

the while, the field Hf remaining less than critical field.

This occurs at the point B on the AC path at

h = 0.50149

m = 0.031747

Further increase now results in a retracing of BOEF. Having

discussed the principal paths, it is now easy to follow the

behavior of the torus along K'C', D'K and KA.

The ideas presented here are not new in principle, being the same in

general point of view as those in Shoenberg's book.11 However, the exact

calculations given here, which were not available to Shoenberg, present

an opportunity for a more careful experimental analysis of Shoenberg's

description. For example, the extent to which the region around the
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points B. C, DI E can be amplified by using smaller values of so is

illustrated in Fig. 15 where, there, so has been chosen at the value 1.4.

To be noted are: (a) the shift in the value of h at point D from a value

near 0.5 to a value of 0.28; and (b) the increased change in the value of m

between C and E.
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APPEDIX

APPROXIMaTE FORMULAE

To facilitate computation, a number of approximate formulae are

listed here for some of the quantities calculated in the earlier sections.

The error resident in the formulae are indicated along with each formula.

The symbol A is used for an abbreviation of loge 8 5 t i.e. in

these formulae

A log, 8s. = Ioe(8R/r)

Half-odd integer Legendre functions of the first kind:

F(S)~~L B.,t + 2gS3

n > 1 F (s)% 2tgi r 1n naP.C
- -. r F(n + 0 4)

For these three formulae, useful when s > 10, which is beyond the

range of the tables , the error is less than 0.1% for s > 10 up to

n = 8 and perhaps further.

First derivative of the half-odd integer Legendre functions of the

first kind:

P- [sg 278s-. L 2 + 6t
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I (/ n 52-)(n 1

The error in the above three formulae is less than 0.1% for s >

for n 4 8 and perhaps further.

Half-odd integer Legendre functions of the second kind

Qu(is) - "I, ( F oP

Q, (s) 2(2sM , ( I + Is ")

J1 (n+ i) S2 J

the error at s > 10 being < 0.1% for n / 5.

The function F 1 defined by eq. (73)

The error in F < 0.1% for so > 4. F1 is confined to the range

I 4 F-' 3 322 1. o 80 76,

when

The coefficients ah defined by eq's. (77) and (78)

OL, 2 _ * 6 + 4 X + 49
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C% - 32 _5 - + I + t X +37 1
3 0 , 

21YTrn [r(n )] (512_1)r---2~~~~~~~~~~~~~~~~~~
(2n-I) | t~r(n) 1 (.250)n -
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For oc, , and oL- the error is of the order 0.03%O at SO = 10 but

increases slowly with n.

The flux for cases I and II, and the ratio G defined by ec. (98):
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The self-inductance:
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The magnetic moments:
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The maximum and minimum fields for the four cases I, II, III and IV:
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